

Electronique • Informatique Industrielle • Automatisme

SELIAtec S.A. 53, rue de Rountzenheim B.P. 34 67620 SOUFFLENHEIM Tél.: 03 88 86 68 54 Fax: 03 88 86 74 76

CT 01

Interface de communication série asynchrone une voie

Version CT 01 N - 2002

CT 01 Manuel d'utilisation

NOTIFICATION

Les informations contenues dans ce manuel sont susceptibles d'être modifiées sans préavis.

SELIAtec S.A. NE PEUT ÊTRE TENU RESPONSABLE DES OMISSIONS TECHNIQUES OU RÉDACTIONNELLES, NI DES DOMMAGES CONSÉCUTIFS À LA FOURNITURE OU À L'UTILISATION DU PRODUIT ET DE SON MANUEL.

AVANT LA MISE EN SERVICE, IL INCOMBE A L'UTILISATEUR DE VERIFIER QUE LES CARACTERISTIQUES TECHNIQUES REPONDENT AUX SPECIFICATIONS DONNEES POUR LE PRODUIT.

Le présent manuel contient des informations protégées par copyright. Aucune partie du présent document ne peut être photocopiée ou reproduite sous quelque forme que ce soit sans l'accord écrit préalable de SELIAtec S.A.

Les noms et marques cités dans ce manuel sont déposés par les fabricants respectifs.

Conventions :

Cette rubrique vous informe qu'une commande est à saisir au clavier.

Cette rubrique vous informe que la disquette fournie avec la carte est à utiliser pour la suite des commandes.

Cette rubrique permet de clarifier certaines informations.

ATTENTION Cette rubrique vous recommande de suivre scrupuleusement les instructions sous peine de provoquer une détérioration du matériel ou une perte de données.

IMPORTANT, soyez prudent. Cette rubrique vous avertit que la mauvaise utilisation du matériel ou un non-respect des instructions risquent d'entraîner des blessures corporelles.

DIRECTIVE EUROPEENNE 89/336/CEE

Conformité des produits à la directive 89/336/CEE. Selon les normes européennes harmonisées relatives aux appareils de traitement de l'information :

- émission NF EN 55022, - immunité NF EN 50082-1.

Les environnements couverts sont les sites résidentiels, les locaux commerciaux et l'industrie légère intérieurs et extérieurs. Ex : ateliers, laboratoires, centres de service, bureaux, etc... Les sites qui sont caractérisés comme étant alimentés directement en basse tension par le réseau public sont considérés comme résidentiels, commerciaux ou l'industrie légère. La conformité à des normes relatives à d'autres sites peut être vérifiée sur demmande. En utilisation normale les cartes SELIAtec sont implantées dans un PC et peuvent être considérées comme étant un composant faisant partie d'une installation complète. ll est donc important que l'intégrateur des produits s'assure que le PC lui-même ainsi que tous les équipements et le câblage extérieur répondent leur ensemble aux dans Directives Européennes CEM. Nous préconisons pour la connexion de tous les signaux d'entrées et de sorties d'utiliser du câble, des connecteurs et des capots de connecteurs blindés. Il est important de veiller à la continuité du blindage entre le connecteur de la carte, le capot et le câble. Pour plus de renseignements, voir en annexe CEM

Bien respecter les règles concernant la protection de l'environnement lorsque vous mettez au rebut des déchets électroniques.

Manuel d'utilisation

TABLE DES MATIERES

1. Introduction	6
1.1 Contenu de l'emballage	6
1.2 Domaines d'applications	6
1.3 Caractéristiques	7
2. Démarrage rapide	8
3. Installation	8
3.1 Ouverture de l'ordinateur	8
3.2 Mise en place de la carte	9
4. Configuration	11
4.1 Ports séries installés	11
4.2 Adressage	12
4.2.1 Adresses de base et interruptions	12
4.2.2 Définition des registres internes	14
5. Modes de transmission	15
5.1 Présentation	15
5.2. Module MT 01	15
5.2.1 Synoptique	15
5.2.2 Installation des cavaliers	16
5.2.3 Signaux des connecteurs	16
5.2.4 Raccordement	17
5.3 Module MT 02	18
5.3.1 Synoptique	18
5.3.2 Installation des cavaliers	18
5.3.3 Signaux des connecteurs	19
5.3.4 Raccordement	19
5.4 Module MT 03	20
5.4.1 Synoptique	20
5.4.2 Installation des cavaliers	20
5.4.3 Signaux des connecteurs	22
5.4.4 Raccordement	22
5.5 Module MT 04	23
5.5.1 Synoptique	23
5.5.2 Installation des cavaliers	23
5.5.3 Signaux des connecteurs	27
5.5.4 Raccordement	28

Manuel d'utilisation

5.6 Module MT 05	29
5.6.1 Synoptique	29
5.6.2 Installation des cavaliers	29
5.6.3 Signaux des connecteurs	31
5.6.4 Raccordement	32
5.7 Module MT 08	36
5.7.1 Synoptique	36
5.7.2 Installation des cavaliers	36
5.7.3 Signaux des connecteurs	38
5.7.4 Raccordement	39
6. Circuit de protection	40
6.1 Caractéristiques	40
6.2 Configuration	40
7. Visualisation	41
7.1 Visualisation par L.E.D. de la transmission	41
8. Logiciel	41
8.1 Déclaration d'une carte CT01 sous Windows NT	41
ANNEXE A	42
9.1 Schéma de principe	42
ANNEXE B	43
9.2 Schéma d'implantation	43
9.2.1. Carte de raccordement AV 03	43
ANNEXE C	44
9.3 Correspondance des signaux SUB-D9 \rightarrow SUB-D25	44
ANNEXE D	45
9.4 Signaux du connecteur d'extension IBM - AT	45
	46
9.5 Renseignements pratiques sur les modes RS 422 - RS 485	46

1. Introduction

1.1 Contenu de l'emballage

Déballez soigneusement votre carte d'extension. Vérifiez que vous avez bien reçu tous les éléments suivants:

- La carte d'extension PC.
- Le manuel d'utilisation.

Si un de ces éléments manquait ou était endommagé, contactez-nous immédiatement au 88 86 68 54.

1.2 Domaines d'applications

La carte d'extension CT 01 permet de rajouter un port de communication série asynchrone supplémentaire à votre configuration actuelle. Elle peut s'intégrer dans les différentes applications suivantes :

- Communication série avec un modem
- Communication série entre deux PC ou avec un automate
- Communication en mode RS 422
- Utilisation dans un réseau en mode RS 485 (2 fils ou 4 fils)
- Transmission série en milieu industriel perturbé
- Communication série avec isolation galvanique complète

Toutes autres applications nécessitant une transmission série industrielle

1.3 Caractéristiques

La carte CT 01 est un matériel compatible IBM PC XT/AT.

Elle peut être configurée comme liaison série standard (COM1, COM2, COM3, COM4) ou utilisée en adressage libre (0 à 03FFh). La carte occupe 8 octets à partir de l'adresse de base. Le décodage d'adresses s'effectue dans l'espace I/O de 64 Ko du PC.

La vitesse de transmission est programmable de 50 à 56000 bauds.

Les interruptions XT et AT sont disponibles :

- XT : IRQ2, IRQ3, IRQ4, IRQ 5
- AT : IRQ10, IRQ11, IRQ12, IRQ15

La carte peut être équipée, en option, du composant 16C550 (mémoire tampon - FIFO de 16 octets).

Les lignes de signaux disponibles sur un connecteur SUB-D 9 broches mâle sont équipées de diodes de protection contre les surtensions (TRANSIL : 13 V).

Avec la liste des modules suivants, différents modes de transmission peuvent être configurés :

• Réf. MT 01 : RS 232 (TXD, RXD, RTS, CTS, DTR, DSR, DCD, RI)

• Réf. **MT 02** : RS 232 avec isolation galvanique complète (TXD, RXD,

RTS, CTS)

- Réf. MT 03 : RS 422 (TXD, RXD) Signaux RTS et CTS en option Isolation galvanique complète en option
 Réf. MT 04 : RS 485 -Transmission 2 fils ou 4 fils - (TXD, RXD)
 - Isolation galvanique complète en option
- Réf. MT 05 : Boucle de courant (TXD, RXD) Isolation galvanique complète en option
- Réf. MT 08 : RS 485 Transmission 2 fils (TXD, RXD) reconnaissance automatique de direction Isolation galvanique complète en option

2. Démarrage rapide

ATTENTION. Pour la mise en service rapide de votre carte, reportez-vous impérativement aux chapitres suivants:

⇒ 4. Configuration

 \Rightarrow 5. Modes de transmission

3. Installation

Pour installer la carte d'extension, procédez comme suit :

3.1 Ouverture de l'ordinateur

- Placez le PC sur une surface plane, stable et non encombrée.
- Enlevez le capot de l'ordinateur.

3.2 Mise en place de la carte

 Retirez la plaque de protection de l'un des emplacements libres du BUS ISA (Voir figure 1).

Figure 1

<u>Remarque :</u> La carte est prévue pour fonctionner dans un slot court AT (16 -bit), cependant s'il n'y avait plus d'emplacement de disponible, un slot court XT (8-bit) conviendrait également. Dans ce cas les interruptions étendues IRQ10, IRQ11, IRQ12, IRQ15 de l'AT ne seraient plus utilisables.

ATTENTION. Les décharges d'électricité statique peuvent endommager les composants électroniques.

- Respectez les quelques règles de prudence suivantes:
 - Transportez et conservez la carte dans son emballage antistatique.
 - Ne touchez pas les composants électroniques.
 - Manipulez la carte par les bords et son équerre métallique de fixation.
- Configurez la carte (Voir chapitre 4.Configuration).

 Insérez la carte dans l'emplacement choisi. Veillez à bien l'aligner sur le connecteur ISA avant de l'enfoncer (Voir figure 2).

- Enfoncez la carte complètement en appuyant sans forcer.
- Remettez en place la vis de fixation.
- Remontez l'ordinateur. La carte est maintenant prête à l'emploi.

4. Configuration

4.1 Ports séries installés

ATTENTION, avant d'utiliser la carte en COM1, COM2, COM3, COM4, vérifiez les ports séries déjà installés sur votre PC. En cas de conflit d'adressage vous risqueriez d'endommager la carte et votre ordinateur.

Le programme DEBUG livré avec les utilitaires DOS vous permet de visualiser les différents ports séries présents sur votre PC.

C:>

DEBUG et appuyez sur la touche ENTREE

D 40:0 et appuyez sur la touche ENTREE

æ			
Ш.	_	_	Т.
8	_		8
8		_	8
8			æ.
			- H

0040:0000 F803 F802 0000 0000 - ...

Adresse 03F8 : COM1 : Port installé Adresse 02F8 : COM2 : Port installé Adresse 03E8 : COM3 : Port libre Adresse 02E8 : COM4 : Port libre

Notez que les adresses sont restituées sous la forme inversée

Q et appuyez sur la touche **ENTREE** pour quitter le programme.

4.2 Adressage

4.2.1 Adresses de base et interruptions

La carte CT 01 peut être configurée comme liaison série standard (COM1, COM2, COM3, COM4) ou utilisée en adressage libre (0 à 0FFFFh). Le décodage d'adresses s'effectue dans l'espace I/O de 64 Ko du PC par pas de 8 octets.

Tableau du décodage des bit d'adresse :

Bit d'adresse	A9	A8	A7	A6	A5	A4	A3
DIP et JUMPER	S7	S6	S5	S4	S3	S2	S1
Etat logique	1	1	0	0	0	1	0

Dans l'exemple ci-dessus, l'adresse de base 310h est décodée.

S1 à S8 sont les interrupteurs du micro-switch SW1.

Un état logique 0 correspond à la position ON des interrupteurs. Un état logique 1 correspond à la position OFF des interrupteurs.

Ports série standards :

Adressage libre :

PORTS	INTERRUPTIONS	ADRESSAGES
Exemple :	W2	SW1 A3A10
390 h IRQ 12	IRQ 15 12 11 10 2 3 4 5	ON S1 S8

4.2.2 Définition des registres internes

Adresses	Lecture (RD)	Ecriture (WR)	Condition
Base + 0	Registre réception	Registre émission	DLAB★=0
Base + 0	Débit partie b	basse (LSB)	DLAB★=1
Base + 1	Autorisation c	DLAB★=0	
Base + 1	Débit partie h	DLAB★=1	
Base + 2	Identification		DLAB★=0
	d'interruption		
Base + 3	Contrôle	"	
Base + 4	Contrôle d	"	
Base + 5	État de	"	
Base + 6	État du r	"	
Base + 7	Libre utilisateur pour st	"	
	donn		

 $DLAB \star$: Bit 7 du registre de contrôle de ligne. Il doit être à 1 pour autoriser l'initialisation de la vitesse de transmission. Pour toutes les autres fonctions l'état logique est 0.

6. Circuit de protection

6.1 Caractéristiques

Les 9 signaux disponibles sur le connecteur SUB-D 9 broches mâle sont équipés de diodes de protection contre les surtensions (TRANSIL).

Tension de protection : 15 V

Puissance : 400 W/ 1 ms

6.2 Configuration

Pour l'évacuation des courants parasites, le point commun des diodes est à relier, soit au châssis du PC, soit à la masse de l'alimentation du PC.

7. Visualisation

7.1 Visualisation par L.E.D. de la transmission

La carte CT 01 est équipée de deux L.E.D. placées au-dessus du connecteur SUB - D9 pour visualiser l'activité de la transmission série.

- L.E.D. de couleur verte pour la réception d'un signal.
- L.E.D. de couleur rouge pour l'émission d'un signal.

8. Logiciel

8.1 Déclaration d'une carte CT01 sous Windows NT

Commencez par ajouter au système le port série par l'intermédiaire du programme "Ports " dans le panneau de configuration. Cliquez sur ajouter puis spécifiez un nouveau numéro de port, son adresse correspondante ainsi que l'interruption déclenchée par la communication sur ce port.

Lancez le programme d'édition de la base de registres "regedit " en tapant regedit sur la branche

"HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Serial" et ajoutez les entrées suivantes ou modifiez leurs valeurs si elles existent afin d'autoriser le partage d'interruption par le port série :

PermitShare0x0000001ShareInterrupt0x00000001

Puis sélectionnez la branche

"HKEY_LOCA_MACHINE\SYSTEM\CurrentControlSet\Services\Serial\

Parameters ", puis la branche correspondante aux ports séries que venez de déclarer (par exemple Serial10000, Serial 10001, ...) pour cela vérifiez le contenu de la variable "DosDevices " et ajoutez l'entrée suivante au niveau du port série.

InterruptStatus 0x31F

L'entrée pointe sur le registre de status du port dont l'adresse est " adresse de base de la carte +0x1F ".

Manuel d'utilisation

ANNEXE A

9.1 Schéma de principe

Manuel d'utilisation

ANNEXE B

9.2 Schéma d'implantation

9.2.1. Carte de raccordement AV 03

C'est une carte de connexion 9 broches vers des bornes à vis. Elle s'enfiche directement sur le connecteur SUB-D9 de la carte CT 01. Le raccordement des signaux est aisé et ne nécessite pas de câble.

ANNEXE C

9.3 Correspondance des signaux SUB-D9 \rightarrow SUB-D25

SUB-D9	SUB-D25	Signification	
3	2	Ligne de transmission	(TXD)
2	3	Ligne de réception	(RXD)
7	4	Demande d'émission	(RTS)
8	5	Prêt à émettre	(CTS)
6	6	Equipement prêt	(DSR)
5	7	Masse	(GND)
1	8	Détection de porteuse	(DCD)
4	20	Terminal prêt	(DTR)
9	22	Indicateur de sonnerie	(RI)

SUB-D9

SUB-D25

ANNEXE D

9.4 Signaux du connecteur d'extension IBM - AT

Coté so	oudure	Coté	composants
GND RESET DRV + 5V IRQ2 - 5V DRQ2 - 12V RESERVE + 12V GND / MEMW / MEMW / IORW / IORW / IORW / JACK3 DRQ3 / DACK1 DRQ1 / DACK0 CLK IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 / DACK2 T/C ALE + 5V OSC GND	B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31	A1 A2 A3 A4 A5 A7 A9 A10 A12 A13 A14 A15 A17 A18 A20 A21 A22 A24 A25 A26 A27 A28 A29 A30 A31	/ IO-CH CK D7 D6 D5 D4 D3 D2 D1 D0 IO-CH RDY AEN A19 A18 A17 A16 A15 A14 A15 A14 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
/ MEM-CS16 / IO-CS16 IRQ10 IRQ11 IRQ12 IRQ15 IRQ14 / DACK0 DRQ0 / DACK5 DRQ5 / DACK6 DRQ6 / DACK7 DRQ7 + 5V / MASTER GND	D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18	C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18	/ SBHE A23 A22 A21 A20 A19 A18 A17 / MEMR / MEMW D8 D9 D10 D11 D12 D13 D14 D15

ANNEXE E

9.5 Renseignements pratiques sur les modes RS 422 - RS 485

1. Modes de transmission RS 422 - RS 485 1.1 Généralités

Les interfaces RS 422 et RS 485 correspondent à une nouvelle génération de transmission série en plein essor. Elles sont caractérisées par une vitesse de transmission élevée et une grande immunité aux parasites.

Les interfaces RS 422 et RS 485 travaillent en mode différentiel, c'est à dire qu'elles réagissent au changement de potentiel des signaux par rapport à une tension de référence, indépendante de la masse du PC ou de l'appareil qu'elles équipent. L'utilisation de câble à paires torsadées est préconisé pour une bonne immunité aux parasites. Les deux extrémités du câble de communication doivent être adaptées par une résistance de terminaison, de valeur proche de l'impédance du câble. En standard, les interfaces sont le plus souvent équipées de résistances de 120 Ω .

La longueur maximale du câble est de 1200 m environ. Les vitesses de transmissions s'échelonnent de 100 KBaud pour un câble de 1200 m à 10 MBaud pour une longueur de 12 m.

1.2 Liaison RS 422

La liaison RS 422 permet de relier deux appareils point à point. On utilise dans ce cas, deux paires de fils torsadés, une pour l'émission, l'autre pour la réception. En RS 422 une transmission en "Full-duplex" est possible. Il n'est pas nécessaire de commander les drivers d'émission et de réception. La transmission série RS 422 est complètement transparente. Un logiciel utilisé en mode RS 232 pourra être repris sans aucune modification.

Manuel d'utilisation

ANNEXE E

1.3 Liaison RS 485

La liaison RS 485 permet de créer des architectures de réseau. Le nombre d'émetteurs et de récepteurs sur une seule ligne peut aller jusqu'à 32. En RS 485, il est nécessaire de commander les drivers d'émission et de réception pour éviter les conflits de transmission sur la ligne. La liaison pourra être en 2 fils ou 4 fils.

- O <u>RS 485 -4 fils-</u>
- Possibilité de travailler en "Full-duplex".
- Utilisation pour des réseaux Maître/esclaves.
- Réalisation facile de répéteurs pour des distances supérieures à 1200 m.

Schéma de principe d'une liaison RS 485 -4 fils-

Manuel d'utilisation

ANNEXE E

O <u>RS 485 -2 fils-</u>

- Réduction du coût du câble.
- Fonctionnement en "Half-duplex" uniquement.
- Réalisation de réseaux multi-maîtres.

Schéma de principe d'une liaison RS 485 - 2 fils-

1.4 Adaptation des lignes

Dans certains cas, il est nécessaire de polariser les lignes de réception. Ceci est surtout utilisé pour les architectures de réseau RS 485 -2 fils-. Il peut se présenter des situations où aucun émetteur soit actif, c'est à dire que la ligne est flottante. Les lignes doivent donc être polarisées pendant cet état transitoire.

